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The ergodic property of the hard-ball systems is investigated numerically by comparing the microcanonical
single-particle distributions and the corresponding numerical results in two- and three-dimensional cases. A
Boltzmann-entropy-like quantity H(n,) is defined and its evolution is discussed. The deviation of this entropy
from the equilibrium value obeys a power decay law in the long time limit, and the origin of this tail is

explored heuristically. [S1063-651X(96)07704-5]
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I. INTRODUCTION

Both the verification of the Boltzmann-Sinai ergodic hy-
pothesis and the understanding of the mixing behavior of the
physical systems are substantial questions of the foundations
of statistical physics [1,2]. Ergodicity means roughly the ex-
ploration of the energy surface H(p;q)=F by a typical tra-
jectory. Krylov suggested that the exponential instability
property should be responsible for the cause of ergodicity in
a model dynamical system [3]. Mathematically, the ergodic
property is characterized by the positive Kolmogorov-Sinai
entropy, which is related to all positive Lyapunov exponents
[4,5]. It has been shown that for the ergodic Hamiltonian
systems, ergodicity (chaos) provides the validity of the laws
of equilibrium thermodynamics and statistical mechanics
[6,7]. In general, nonintegrable systems involve two classes
[8]. One class contains the completely chaotic systems, such
as billiard systems [9], which generally have hard convex
surfaces or hard surfaces with irregular shape (dispersing or
semidispersing property). Hard surfaces lead to nonsmooth
Hamiltonians. In these systems, infinite number of periodic
but unstable orbits can be found. One of the most interesting
models in mathematics is the Sinai billiard [4,5], i.e., a point
particle moves freely in a given domain and collides elasti-
cally with the hard walls, thus the topology of the boundary
is the most important factor. Slight asymmetry may lead to
ergodicity, mixing and even a K system. The other class
comprises of those with smooth Hamiltonians, these systems
contain quasiperiodic [Kolmogorov-Arnold-Moser (KAM)],
chaotic and stable (unstable) orbits. The study of this class of
systems is the main subject of chaos in the conservative
Hamiltonian systems. In traditional hypotheses, ergodic
properties are always connected to a large number of degrees
of freedom and are difficult to prove.

On the other hand, a very old but physically important
model is the hard-ball gas in a box, which may correspond to
a complicated billiard [1]. Consider the motion of N balls of
radius r in a box (a cube, or, more generally, in a specific
domain) Q e R? (d=2), the balls interact elastically among
themselves and with the (piece-wise smooth) boundary dQ,
then the Hamiltonian reads

H=2 pil2m;, 1)
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where p?=p?+ p?y for the two-dimensional (2D) motion
and p?=p +p fy +p 1-21 for the three-dimensional (3D) case.

The famous Boltzmann-Sinai ergodic hypothesis claims
that the Hamiltonian systems of an arbitrary number (N=2)
of the elastic hard balls on the v (¥=2) dimensional torus are
ergodic on connected components of submanifolds of the
phase space where the trivial integral of motion is constant
energy. In fact, this hypothesis stimulated the initial develop-
ment of the notions of the ergodic theory itself in the works
of Boltzmann [10] and Gibbs [11]. The outstanding contri-
bution in the approach to this problem was made by Ya. G.
Sinai in his papers [4,5], where some powerful methods were
developed, and he proved the ergodicity of the two-ball sys-
tem on v (¥=2) torus. Recently, the method proposed by
Kramli, Simanyi, and Szasz [12—-16] is also very important
in proving the ergodicity for the hyperbolic dynamical sys-
tems with singularities, and they have proved the ergodicity
for the three-disk systems on a two-torus, four-disk systems
on v (v=3)-torus and N-disk system on v (v=N)-torus.
However, the proof of the ergodicity for a system of an ar-
bitrary number of elastically interacting balls is still an open
problem. Theoretical difficulty emphasizes the importance of
the numerical investigations.

Ergodicity in one-dimensional hard-ball systems has been
numerically investigated by Ackland [17], where periodic
boundary condition was used. Investigation of two- and
three-dimensional hard-ball systems is also very important
because they are more physically significant. In this paper,
we shall test the ergodicity of the two- and three-dimensional
hard-ball systems by comparing the microcanonical distribu-
tion (single-particle reduced distribution) and numerically
statistical results. Similar method has been used in our pre-
vious work [18]. As is expected, we find the good ergodic
property of this system for the different number of balls
(N=2) in the two- and three-dimensional cases.

On the other hand, as we mentioned from the beginning, a
deeper understanding of the mixing behavior is necessary
from the point of view of physics [9], such as the rate of
mixing, the evolution of physical quantities, and the equipar-
tition of energy to each degree of freedom. These are rarely
discussed quantitatively in mathematics, but important in
physics. In order to explore the mixing behavior of the hard-
ball systems, we introduce a Boltzmann-entropy-like quan-
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tity H(n.), which will be defined in the Sec. III, and inves-
tigate its evolution. Because we are interested in the
statistical behavior of our systems, long time evolution is
required. Therefore short-time effects will not be considered
here. We find that this Boltzmann’s entropy evolves to its
equilibrium value monotonically. For a given mixing Hamil-
tonian system, the rate of a single trajectory covering the
entire energy surface is usually very slow in the long time
limit. Numerical investigation reveals that a long time tail of
the power-law decay of the Boltzmann’s entropy exists. We
shall also study the origin of this tail numerically, and show
that the neutral boundary (i.e., regular motion segments)
should be responsible for this long tail.

II. ERGODICITY OF HARD-BALL SYSTEMS

For simplicity, we assume that all balls are identical, i.e.,
have the same inertial mass m and the same radius r. The
hard-ball potential and the hard reflecting walls enable us to
describe the dynamics just by a series of discrete collisions,
and this greatly simplifies our numerical simulation. At each
step, we only need to compute the time of the next collision
between each pair of balls and between the balls and the
walls, and then choose the shortest time as the time step to
move all the balls.

If the ball-wall collision occurs, we just use the elastic
reflection rule: p,,— —p;,, where i denotes the ith ball and
a represents the direction perpendicular to the wall, i.e., x, y,
or z. If the ball-ball collision occurs, for example, between
the ith and the jth one, by using the conservation law of
kinetic energy and momentum, we have the velocities after
the collision:

V=V (Ve
i— Vi mi+mj( J ! |;7|2 "
G 2m; - - ro. )
J— Vi m'+m.(Vj Vi)'l‘;fl'fr, )

t 7

where r=r,—r;, and r;, r; denote the positions of the mass
centers of the ith and jth balls, respectively, v; and v{ the
velocities of the ith ball before and after the collision.

It should be noted that in this system the conservation of
momentum is violated, for the balls collide with the wall.
This will strengthen the degree of ergodicity (chaos), but the
conservation of the magnitude of the momentum (i.e., |p;|) at
the ball-wall collisions will reduce the mixing rate, i.e., slow
down the evolution to the equilibrium state. In the following
subsections, we will discuss the ergodic property of the hard-
ball systems in both momentum space and configuration
space.

A. Ergodicity in the momentum space

The single-particle momentum probability distribution
may be explicitly derived from the microcanonical ensemble.
Taking the two-dimensional motion, for an example, if the
hard-ball system is ergodic, the microcanonical ensemble
distribution should be

AW“ApleplyAxlAyl...ApNxApNyAXNAyNZAF, (3)

where AW is the probability of a trajectory entering a phase
volume unit A" between the E—FE+ AE energy shell. On
the energy surface AE—0. By eliminating x;,y;...xy,yy
and py,,py, (N=2), we obtain the single-particle momen-
tum distribution (the inertial mass is normalized to 1)

p2(p)=Cop(2E—p*)N 2, (4a)
where C, is a normalization constant, which reads
C,=2(N—1)/(2E)"7!, (4b)

and p is the absolute value of p;. Here the subscripts of the
momentum are omitted because all balls have the same dis-
tribution. For the three-dimensional case, the reduced single-
particle momentum distribution is expressed by

p3(p)=Csp*(2E—p?)>N =271, (5a)

and the normalization constant reads

C3=(BN—1)/[(RE)CN" 22151, (Sb)
where
i—1i=3
i1 i i—2 53 (odd D
li==71i2=Y) io1i-3 314 (5¢)
iz TEzz e

and I,=1, Iy=/2.

After scaling, the average energy per ball e (i.e., the tem-
perature of the system) is an irrelevant control parameter for
the system behavior. Therefore we fix e =50 000 throughout
the paper without losing any generality (E=Ne).

From Fig. 1(a) to 1(c), we compare the numerical and
theoretical reduced single-particle momentum distributions
p(p) for the different numbers of balls (N=2, 6, 12) in the
two-dimensional case. Here every numerical p(p) is ob-
tained by running a single trajectory from an arbitrary initial
condition, and 5X10° data are collected. We find that the
numerical curves (solid sawlike) are in quite good agreement
with theoretical ones (smooth dashed); this indicates the sys-
tems reach good ergodicity after a long time. From Fig. 2(a)
to 2(c), the numerical and theoretical distributions for N=2,
6, 12 in the three-dimensional case are given, and quite good
ergodicity is obtained again for all these systems. In fact,
they are even mixing, Ksystem as pointed out by Sinai and
others [1,4,5,12-16]. The dispersing property of the balls
gives the exponential instability, i.e., any two closed trajec-
tories will depart exponentially. However, because of the ex-
istence of the neutral boundary (not dispersing), the evolu-
tion of the system will not be an exponential one in the long
time regime, as we shall see in the following sections.

B. Ergodicity in the configuration space

The behavior of the distribution in the configuration space
is also interesting. Let us <onsider a two-ball system in a
two-dimensional space. We can derive the reduced one-
particle configuration distribution P(x,y) in the x-y plane
from the microcanonical ensemble (3). In order to get the
analytical form of P(x,y), we may fix one ball (say, ball 1)
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FIG. 1. Numerical (solid-saw-like) and theoretical (short-dotted)
single-particle momentum distributions for the two-dimensional
motion of the hard-ball systems with a different number of
balls: (a) N=2, (b) N=6, (¢) N=12. Good agreement shows er-
godicity of 2D hard-ball systems. L=100, E=50 000XN (the same
L and E are taken in all the following figures), =35, and 5%10°
collisions are used for producing each simulation curve.

and compute the accessible area of the other ball (ball 2) by
a geometric consideration. From (3) we may find that
P(x,,y) o ffdx,dy,, where (x,,y,) denotes the center of
mass of ball 2. Simple geometric consideration shows that
there exists a critical radius .= L/6, where L is the length of
the box. When r=<r,, a direct computation gives rise to

P(x,y)=A"(L-2r)?>—4mr?] for |x|<L12—3r
and |y|<L/2—3r;

P(x,y)=A"(L—2r)?>—4r*(w— 6)—2r?sin 26]
for |x|>L/12—3r or |y|>L/2—3r;

P(x,y)=A"[(L=-2r)?=2r23 72— a— B)— r’(sin2a

+sin2B+4 cosa cosB)]

for |x|>L/2—3r and |y|>LR2—-3r, (6)
where cosf=(L/2—r—|x|)/2r in the region |x|>L/2—3r
and |y|<L/2—3r; and cosf=(L/2—r—|y|)/2r in the region
|x|<L/2—3r and |y|>L/2—3r. Moreover, we have cosa
=(LR2—r—|x|)/2r, cosB=(LI2—r—|y|)/2r. A is a normal-
ization constant.

For the case r>r,, one should consider more geometric
cases and an analytical expression of P(x,y) is still available

0 200 400 600 800

FIG. 2. The same as Fig. 1 with the space dimension changed
from two to three. (a) N=2, (b) N=6, (c) N=12. Again good agree-
ment shows ergodicity of 3D hard-ball systems. Numerical p(v) is
computed, based on the data at all ball-ball and ball-wall collisions.

while tedious. Hence we do not give this long expression
here, but some theoretical results are still presented in Fig.
3(d) by the dotted curve.

For a single x-variable distribution, we have P(x)
=[P(x,y)dy. The comparison between the numerical
counting distribution and the theoretical reduced equilibrium
distribution is shown in Fig. 3(a)-3(d). It is obvious that a
for long enough time, the ergodicity can be reached. For
small r, a long horizontal segment exists. In the small » limit,
i.e., r—0, the influence of the limitation |r,—7;[=2r is neg-
ligible, and P(x)—const. As r increases, the width of the
horizontal segment decreases. At r=r, the horizontal part
disappears. For large r, the two balls would spend a major
portion of time in the corner region, then P(x) has a large
probability near the boundaries, and a small probability in
the central region. Numerical simulations support our expec-
tation. In Figs. 3(a), 3(b), horizontal segments are presented,
and in Fig. 3(d), r=20>r, the horizontal part disappears.

The same algorithm can be carried out for the many-
particle systems. However, as N increases, the computation
becomes more and more tedious, while the general conclu-
sion is the same. We will not go further for N>2.

III. BOLTZMANN’S ENTROPY AND LONG TIME TAIL

As we mentioned above, the hard-ball system is ergodic
and mixing, so it will evolve to the equilibrium state from a
typical initial state. In statistical mechanics, one often uses
Boltzmann’s entropy to describe the relaxation of a dynami-
cal system to the equilibrium state. To characterize the mix-
ing behavior (relaxation process), we introduce a Boltzmann-
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(b)

FIG. 3. Numerical (solid-saw-
like) and theoretical (short-dotted)

single-particle configuration dis-
tributions for the two-dimensional

motion of two hard-ball systems
(d) with different radius: (a) r=5,
(b) r=10, (c) r=15, (d) r=20.
Good agreement shows ergodicity
of 2D two hard-ball systems.
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entropy-like quantity H,(n.), which is defined as

Hp(nc)=f P (P)np, (p)dp. (M

Here n. denotes the number of collisions (including both
ball-ball and ball-wall collisions), and pn (P) represents the

reduced distribution after the nth collision, computed based
on all collisions. We call this quantity a Boltzmann-entropy-
like one because it has the form similar to the standard Bolt-
zmann’s entropy in the many-body systems, but it is still
slightly different from the standard definition of a Boltz-
mann’s entropy because the latter considers the distribution
in the entire single-particle phase space including both con-
figuration and momentum variables. However, for conve-
nience, we simply call Eq. (7) the Boltzmann’s entropy in the
following discussions. Another reason for introducing this
quantity is that it can be easily computed numerically, and it
also describes the mixing behavior, as we may see in the
following discussions.

Note that here the Boltzmann’s hypothesis of the molecu-
lar chaos is violated, i.e.,

Pn (P1:P2)F P (P1)Pn (P2)- ®)

When n,—w, H,(n.)—H,y, where H,, is the Boltzmann
entropy at the equilibrium state. In Fig. 4, the evolution of
H,(n,) is plotted. It is shown that the Boltzmann’s entropy is
a monotonically decreasing function, this monitonicity exists
even without the Boltzmann’s chaotic assumption and with
the finite ball volume. We also find that the system reaches
nearly equilibrium within a short time and quite a long time
is spent in reaching the perfect equilibrium state. This shows
that the rate for a trajectory covering the energy surface is
very slow in the long time limit.

The radius of the hard-balls r (or, the volume of the box
L% may affect the relaxation process of the system. The
larger the radius is, the faster the system reaches the equilib-
rium state. Taking the two-dimensional two-ball system, for
example, the length of the box is L=100. We count the first
10 000 collisions. Then the ratio of the number of the ball-
wall collisions Ny, to the number of the ball-ball collisions
Ny, is 9070/930 for r=5, while 8318/1682 for r=10, and
6966/3034 for r=20, indicating the number of the ball-ball
collisions increases with increasing r for a given number of



3250 ZHIGANG ZHENG, GANG HU, AND JUYUAN ZHANG 53
0 0.0
-2 0.5
o 1.0
o
? 5] < -1.54
N’ —
- 20!
-8 J N=
25
-10
N=12 =0
-12 4 -3.5 . . . . T r T
0 20000 40000 60000 80000 100000 6 7 8 9 10 11 12 13 14
n, Innc

FIG. 4. The evolution of the Boltzmann’s entropy H,(n.) in the
2D case for the number of balls the same as in Fig. 1. The entropy
decreases monotonically with increasing time.

Hy(n,)

FIG. 5. The evolution of Boltzmann’s entropy H,(n.) for the
2D and two-ball case for the different radius of balls. From upper to
lower we take r=1, 5, 10, 20, respectively. The mixing rate in-
creases with increasing r.
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FIG. 6. The log-log (with the base e =2.718 281 83...) histogram
of 8,(n;) vs n, in the two-dimensional motion case for the different
number of balls: N=2 (dot-dashed), 6 (dashed), 12 (solid). Long
straight segments exist in the long time limit, indicating the power-
law decay of 5,(n.).

FIG. 7. The same as Fig. 6 in the three-dimensional motion
case. Long straight segments and then the power-law decay of
6,(n.) also exist in the long time limit.

total collisions. In Fig. 5, the evolution of H,(n.) is shown
for the 2D two-ball system for a different », we find that the
mixing rate in momentum space increases with increasing r.
However long tails still exist for a different r.

While the rate of covering the constant energy surface is
very slow, what law is obeyed in this long time limit? We use
the difference 6,(n.) = |Hp(nc)—Hp0| to study this limit. In
Figs. 6 and 7, we plot the log-log (with the base
e=2.718 281 83...) histograms of 6,(n.) for the 2D and 3D
cases and find that the long straight segments exist, which
shows a power-law decay of &,(n,) [or, H,(n.)] for large n,
(long time).

The long tail behavior has been explored by using various
methods, and in different systems [20-27]. Systems with
very strong statistical properties (K systems) are character-
ized by exponential instability of motion, which indicates the

FIG. 8. The log-log histogram of &,(n)[8,(n.)] vs n.(n.) in
the two-dimensional motion case for the different number of
balls: N=2 (solid), 4 (dashed), 5 (dot-dashed), 6 (dotted), 7
(short-dotted), where group A is the same as in Fig. 5, and group B
(n!) represents the number of collisions between a given ball with
the other balls only. The curves B drop dramatically, which shows
what happens when the influence of the ball-wall collisions (i.e.,
long regular motion) is lifted.
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FIG. 9. The evolution of the Boltzmann’s entropy H,(¢) for the
2D and two-ball case for the different radius of the balls. From
upper to lower we take r=5, 10, 15, 20, respectively. It is shown
that H,(z) decreases monitonically and approaches its equilibrium
value as time goes to infinity.

exponential loss of the memory of the initial state. However,
for a K system approaching an equilibrium state, the picture
of a transport phenomena (i.e., an exponential decay of cor-
relation functions) given by Boltzmann is not completely
correct [19]. Boltzmann’s equation can only describe short
time processes. Alder and Wainwright, in a computer calcu-
lation of the velocity autocorrelation function for a gas of
hard spheres (K system), found that the decay of the auto-
correlation function was exponential only for a few mean
free times and that after a longer time it decays as a power
law. This long tail is derived by a number of authors [20-25]
based on the hydrodynamic arguments and the many-body
collision considerations. Other explanations, such as the
mode-coupling theory, the Brownian-motion theory, and so
on, were also presented. However, these techniques all rely
on the various approximation scheme. Vivaldi, Casati, and
Guarneri [26] analyzed the origin of the long time tails by
considering the dynamics of the system in terms of the theo-
retical arguments and the numerical computations. They dis-
cussed a typical strongly chaotic system (K), i.e., the stadium
billiard. It is shown that the tails may depend on the presence
of arbitrarily long segments of regular motion in the time
evolution of the stochastic orbits. Numerical results satisfac-
torily support this conclusion [26,27].

In our case we study the Boltzmann’s entropy rather than
the various correlation functions. We find the approaching of
the Boltzmann’s entropy towards equilibrium value also
manifests the long time behavior. For our hard-ball system,
the regular-motion mechanism also exists during the free
motion and the ball-wall collisions. This should affect the
evolution of H(n,) [or, &(n.)]. In Fig. 8, we give the log-log
histogram 6,(n,) and 8,(n ), where n, denotes the number
of collisions of a given ball (i.e., the first ball) with other
balls and pnc/_(p) as well as H,(n) are computed at nl, ie.,

4]
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7]
8

Ins(t)

-9 |

-10
1

-11 4

9 10 11 12 13 14 15 16
Int

FIG. 10. The log-log (with base ¢=2.718 281 83...) histogram
of 5,(t) vs t in the two-dimensional motion case for the different
radius of balls: =35 (dot-dashed), 10 (dashed), 15 (solid), 20 (dot-
ted). Long straight segments indicates the power-law decay of
6,(1) .

based on the collisions between the given ball and other balls
only. Group A is the same as in Fig. 5, and group B corre-
sponds to the log-log evolution of &,(n ). We retain group A
in order to give a clear comparison. We find that 5p(n£,)
decreases faster than J,(n.), and a very rapid approach to
the equilibriums in the long time regimes occurs in the n/
cases. These results reveal the effect of the regular motion
segments, i.e., it delays the rate of approach to the equilib-
rium state.

The relaxation in the configuration space can be investi-
gated in a similar way. We may also define the “Boltzmann’s
entropy” in x space as

Hx(t)=j P,(x)InP(x)dx. 9)

The relaxation of H,(¢) is plotted in Fig. 9 for a different
radius r. Again, H,(¢) decreases monitonically in time, and it
approaches its equilibrium value H , as r—oc. In Fig. 10, the
log-log histogram of the difference 8,(t)=|H (t)—H | vs
time is plotted for a different radius 7. It is clearly shown that
5.(1) obeys a power-law decay, i.e., 8,(z)z~'. This is very
interesting, because we get the power-law decay in both the
momentum space and in the configuration space. The power-
law decay in the configuration space is also due to the pres-
ence of the arbitrarily long regular segments during the cha-
otic motion, as may be easily understood from the discussion
in the momentum space.
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